Students and Teachers Forum
Here, Given A+B+C =180o. Now, L.H.S. = sin A.cosB.cosC + sinB. cosA.cosC + sinC.cosA.cosB =cosC( sinA cosB+ sinB cosA) + sinC cosA cosB = cosC sin( A+B) + sinC .....
We have given, A + B + C = πc or, A + B = πc - C or, cos(A + B) = cos(πc - C) or, cos(A + B) = - cosC or, cosA cosB - sinA sinB = - cosC or, cosA cosB + cosC = sinA sinB Squaring both .....
We have given, A + B + C = 180o or, A + B = 180o - C Operating both sides by tan, we get tan(A + B) = tan( 180o - C) or, tanA + cotB 1 - tanA tanB = - tanC or, .....
Here, we have given, A + B + C = 180o ⟹ A + B = 180o - C LHS = cos2A - cos2B - cos2C = 2sin2A + 2B2 sin2B - 2A2 - cos2C = 2sin(A + B) sin(B - A) - .....
We have given, A + B + C = 180o or, 2A + 2B = 180o - 2C Operating both sides by tan, we get tan(2A + 2B) = tan( 180o - 2C) or, tan2A+ tan2B 1 - tan2A tan2BcotA .....
Here, We have given, A + B + C = 180o or, A + B = 180 - C Now operating on both sides by cot we get Cot(A + B) = cot(180 - C) or, cotA cotB - 1cotA .....
Here, P + Q + R =180° or, P + Q =180°- R Taking sin and cos on both the sides then, sin (P + Q) = sin (180°- R) = sin R cos (P + .....
Here, LHS= cosec 2θ - cot 2θ = 1sin2θ - cos2θsin2θ = 1-cos2θsin2θ = 2 sin 2θ2sinθcos θ .....
Here, LHS = 8 cos 10°. cos 50° cos 70° = 4 cos 10°(2 cos 50°. cos 70°) = 4 cos 10°[cos (50°+ 70°) + cos(50° - 70°)] .....
Here, LHS = cos20°-sin20° cos20°+sin20° = cos20°-sin(90°-70°) cos20°+ sin(90°-70°) = cos20°-cos 70° cos20°+ cos 70° .....
Here, sin θ = 35 We know that, cos 2θ = 1- 2sin2 θ = 1-2 (35)2 = 1- 2 × 925 = 725. Thus, the value of cos .....
Here, LHS = 2cos70°. cos20° = cos(70° + 20°) + cos(70° - 20°) = cos90° + .....
Here, LHS = cosA-cos5A sin 5A -sinA = 2sin(A+5A 2) sin(5A-A 2)2cos (5A+A 2)sin(5A-A 2) = sin3A Cos 3A = tan 3A = .....
Here, LHS = 4(cos320o + sin350o) = 4cos320o + 4sin350o = cos(3.20o) + 3cos20o + 3 sin50o - sin(3.50o) = cos60o + .....
Here, cos15o .cos105o = 12 (2cos15o .cos105 o) = 12 [cos(15o+105o) + cos(15o - 105o)] = 12 [ cos120o + cos90o] = 12 [ - 12 + .....
Here, 2sin15o .sin105 o = cos(15o - 105o) - cos(15o + 105o) = cos(- 90o) - cos120o = cos90o - cos120o = 0 -(- 12 ) = 12 , .....
Here, LHS = 4 sinA sin(60o +A). sin(60o - A) = 2sinA[2 sin(60o + A). sin(60o+ A) ] = 2sinA[cos(60o + A - 60o + A) - cos(60o + A + 60o-A)] .....
Here, LHS = 4 cos(60o + A). sin(30o + A) . cosA = 2[2 cos(60o + A). sin(30o+ A) ] cosA = 2cosA[sin(60o + A + 30o + A) - sin(60o + A - 30o-A)] .....
Here, LHS = 4 cos(60o + A). cos(60o - A) . cosA = 2[2 cos(60o + A). cos(60o - A) ] cosA = 2cosA[cos(60 + A + 60 - A) + cos(60 + A - 60-A)] .....
Here, L.H.S = sinsin(θ 2) + sin+ sinθ1+cosθ 2 + coscosθ = sinsin(θ 2) + 2sin+ 2sinθ 2coscosθ 21+cosθ 2 + 2cos 22cos 2θ 2 -1 = sinsin θ 2 ( 1+2( .....
Here, Sin36o - cos36o =Sin36o - cos(90 -54o) = Sin36o - sin54o Using the formula of SinC - SinD, we get = 2Cos(36+54)/2.Sin(36-54)/2 = 2 cos45. sin(-9o) = 2 x 1/√2 (-sin9o) = .....
Here, LHS= 12 (cos 2θ - cos 8θ) = 12 ×2 sin(2θ+8θ 2) sin(8θ-2θ 2) = sin 5θ. sin3θ .....
Here, LHS = coscos40°-sinsin30° sinsin60°-coscos50° = coscos(90°-50°)-sinsin30° sinsin(90°-30°)- coscos50° = sin 50°sin 50°- sin 30°cos .....
Here, LHS = sin 20° sin 30° sin 40° sin 80° = sin 20° 12 in 40° sin 80° = sin 20°× 14 × (2 sin 80° sin 40° ) = 14 .....
Here, LHS = tanθ + 2 tan 2θ + 4 cot 4 θ = tan θ + 2 tan 2θ + 4 tan4θ = tanθ+ 2 tan 2θ + 4 (1-tan 2tan 22θ)2tan2θ .....
Here, LHS = cos3 . cos 3θ + sin3 θ . sin 3θ. We know that, cos 3θ = 4cos3 θ - 3 cos θ or, 4cos3 θ = cos3θ + 3 cos θ ∴ cos3θ = 1 4 ( .....
Here, LHS = sinθ+sin2θ 1+cosθ+cos2θ = sinθ+2sinθcosθ 1+cosθ+ 2cos 2θ-1 = sinθ1+2cosθ .....
Here, RHS = 1+ sinA -cosA 1+ sinA+cosA = (1- cosA)+Sin A (1+cosA)+Sin A = 2sin2 A 2+2sin A 2 cos A 22cos2 A 2+2sin A 2 cos A 2 .....
Here, RHS = 1 +sin ∝ -cos ∝ 1 +sin ∝ +cos ∝ = 1 -cos ∝ +sin ∝ 1 +cos ∝+sin ∝ = 2sin 2 ∝ 2 +2sin ∝ 2 cos ∝ 2 )2cos 2 .....
Here, Tan A2 = 34, SinA =? We know, Sin A = 2tan A21+tan 2 A 2 = 2×× 341+3 4 2 = 341+916 = 322516 = 32×1625 .....
Here, cos ∝ 3 = 1 2 So, sin ∝ 3 = 1 –cos 2 ∝ 3 = 1- 1 2 2 =1- 1 4 = 3 2 We know that, sin∝ = 3 sin ∝ 3 - 4 sin3 ∝ 3 = 3 × 32 - 4 ( 3 .....
Here, LHS = 1+ cosθ+sinθ 1cosθ+ sinθ = 2 cos 2 θ 2+ 2sin θ 2 cos θ 2 2 sin 2 θ 2+ 2sin θ 2 cos θ 2 = .....
Here, sin A = 12 We know that, sin 3A = 3 sin A- 4 sin3 A = 3 × 12 – 4( 12) 3 = 32 – 1 2 = 1. Thus, .....
Here, LHS = cos3A.cos 3A + sin3 A.sin 3A = 1 4 [4cos3A cos 3A + 4 sin3A sin 3A] ...............(i) We have, cos 3A = 4cos3 A - 3cos A .....
Here, LHS: = cosec θ - cot θ = 1 sinθ - cosθ sinθ = 1-cosθ sinθ = 2 sin 2 θ 2 2 sin θ 2 cos θ 2 = sin θ 2 cos θ 2 = .....
Here, LHS = 8 (sin6 p + cos6 p) = 8 [(cos2 p)3] + [(sin2 p)3 ] = 8 [(cos2 p + sin2 p)3] - 3 cos2 p sin2 p (cos2 p +sin2 p )] = 8 .....
Here, LHS = cosec 2θ - cot 2θ = 1 sin2θ - cos2θ sin2θ = 1-cos2θ sin2θ = 2 sin 2 θ 2 .....
Here, LHS = {(1 + cos2θ)/sin2θ}. (1 + cosθ)/cosθ = {(1 + cos2θ) (1 + cosθ)}/(sin2θcosθ) We know, 1 + cos2θ = .....
We know, cos2A = 1 - 2sin2A = 1 - 2(1/2)2 = 1 - 1/2 = .....
Here, Replace B by A, we get sin2A = 2 sinA .....
Here, Tan2A = 2tanA / (1 - tan2A) is the required .....
Here, LHS =(1 - cos π/8)(1 - cos 3π/8)(1 - cos 5π/8)(1 - cos 7π/8) = (1 - cos π/8)(1 - cos 3π/8)(1 + cos 3π/8)(1 + cos π/8), [since cos(π - A) = -cos A.] = (1 - cos² π/8)(1 - cos² 3π/8) = (1 - .....
Here, LHS = sin4b + cos4b = (sin2b)2 + (cos2b)2 = (sin2b + cos2b) - 2sin2b cos2b [ Since, a2 .....
We Know Sin (A + B) = sin A cos B + cos A sin B Putting B = 4A we get sin 5A = sin ( A + 4 A) = sin A cos 4A + cos A sin 4A = sin A (1- 2 Sin2 2A) + cos A .2Sin 2A .....
Here, L.H.S. is in the form of (a - b)2, So, you can write the expression as = (sin2A/2) - 2 (sin A/2) (cos A/2) + (cos2A/2) = (sin2A/2) + (cos2A/2) - 2 (sin A/2) (cos A/2) = 1 - sinA [Since, sin A = 2 (sin A/2) .....
Here, tanA= m and tanB= 1m We know that, tan (A+B) = tantanA+tantanB1- tantanA tantanB = .....
Here, LHS = sin2A cos2B - sin2B cos2A = (1 - cos2A)(2cos2B - 1) - (1 - cos2B)(2cos2A - 1) [ Since, sin2X = 1 - cos2X and cos2X = 2cos2X - 1).] Opening bracket we get = 2cos2B - 1 - 2cos2A.cos2B + cos2A -{2cos2A - 1 - .....
Here, Sin A = 45 We have, Sin A = 3sin A3 -4 sin3A3 =3×45 - 4 ×(45)3 = 125 – 4×64125 = 125 – .....
Here, LHS = secsec4θ- 1 secsec2θ-1 = 1cos4θ – 1 1cos2θ – 1 = 1-cos4θ 4θ ⨉ cos2θ 1-cos2θ .....
Here, LHS = 8 ( 1 + sin πc 8) ( 1 + sin 3πc 8) ( 1 - sin 5πc 8) ( 1 - sin 7πc 8) = 8 1 + sin πc 8( 1 + sin3πc 8 ) [1 - sin ( πc- 3πc/8)][ 1 - sin( πc .....