Students and Teachers Forum

Given,         b = 10 cm    c = 12 cm and ∠BAC = 60o We know,        Area of ∆ABC = ½ bc SinA                         .....

Let,        AD = height of the house = 10.5 m       CE = height of the temple = 26.75 m        AB = DE = distance between the house and the temple       ∠BAC = 45o In right .....

Let,       AD = height of Krishna = 1.72 m      AB = DE = distance between the boy and the column = 250 m      ∠BAC = 60o In right angled triangle ABC,        Tan 60o = .....

Let,     AB = radius of the pond      AC = height of the pole above the surface = 16√3 m     ∠ABC = 30o In right angled triangle ABC,        Tan 30o  = ACAB Or,  .....

Let,      AC = length of the chord = 150 m       BC = distance of the kite from the ground = 75 m      ∠CAB = angle of elevation = θ In right angled triangle ABC,      Sin .....

Let,        AB = height of the eagle from the ground = 180 m         C is the position of the fish        BC = distance of the fish through the position of the eagle.     .....

Given, AB (c) = 26 cm    BC (a) = 15 cm and     AC (b) = 13 cm. Now, Semi-perimeter of ∆ABC (s) = 12(a + b + c)                               .....

Solution: Given, AB (c) = 12 cm    BC (a) = 10 cm and     AC (b) = 8 cm. Now, Semi-perimeter of ∆ABC (s) = 12(a+b+c)                             .....

Given, a = 5 cm    b = 7 cm and     c = 8 cm Now, Semi-perimeter of ∆ABC (s) = 12 (a+b+c)                                     .....

Here, Let AB = height of the tree and C is the position of the observer on the level ground, & BC = 30 m.                                       .....

Let A be the position of the kite.    BA = height of the kite from the level ground    CA = length of the cord paid out. Here,    CA = 150 m. In right angled triangle ABC,      Sin 30o = ABCA or, 12 .....

Let, OP = length of the pole fixed at centre O of circular pond  OQ = radius of the pond. Then,      OP = 30 m. In right angled triangle OPQ,     Tan 60o= OPOQ  or, √3   = 30mOQ or, OQ = .....

Let,     AB = height of the man    CD = height of the tower    AE = BD = distance between the man and the tower. Here, AB = 1.5 m        CD = 50 m and ∠EAC = 45o In right angled .....

Here, Let AC = height of the pole BC = length of the shadow of the pole. Here, AC = 10√3 m and BC = 30 m. In right angled triangle ABC,      Tanθ = ACBC Or, tanθ = 10√3m30m Or, tan θ = √33 Or, .....

Here,  AC = 8 cm and BC = 6 cm Area of ∆ABC = 12√2 cm2 Area of ∆ABC     = ½ ⨉ BC ⨉ CA SinC      or, 12√2          = ½ ⨉ 6 ⨉ 8 ⨉ SinC   .....

Here, Let AB to the man and DC be the tower. Distance between them = AM. In triangle AMD, Tan600 = DMAM Or,  AM = DMtan60               = 120√3 m             .....

Here, Here, ∡ PSQ = 30o [Angles in alternate segment between parallel lines are equal] Also , ∡PQR= 180o–(60 + 30) = 90o. In triangle PQS, using Pythagoras theorem,       PS2 = PQ2 + SQ2 Or, SQ = 12√3cm. Area of .....

In triangle ABD,        Area= 12 ⨉ 12 ⨉ 18 ⨉ sin(2x) Or, 54 = 108 sin (2x). Or,  sin2x = 12 Or,  sin2x = sin30o Therefore, x = 15o. Now, area of triangle BCD is: Area = 12 ⨉ BC⨉ BD ⨉ sin 15o     .....

Let AC = height of the tower and B is the position of the ship. BC = distance of the ship from the foot of the tower. In right angled triangle ABC,      Tan30o =ACBC .....

Here, Let A’B be the tree before it was broken. In triangle AMB,       Tan45 = 7MB Or, MB = 7m. Again,       sin45o = 7mAM Or, AM = 7√2m. Therefore, the height of the original tree = MB +AM   .....

Here, Let AB denote the man, D be the position of the kite. In triangle DAM,       Sin 30o = DM33m Or, 12 = DM33m Therefore, DM = 16.5m. Now, Total height of kite from ground = 16.5m + 1.1m = 17.6 .....

Here, Le AB be the tower, and DC be the man. AM  = 53.5 – 1.54          = 51.96m. Also,       DM = 30 m. So, in triangle ADM,       Tan ∡ADM = AMDM Or, Tan ∡ADM = .....

Here, Let AB be the tree. M be the part from which it is broken. So, In triangle AMB,      Cos60o = x15 - x Or, ½ = x15 - x Or, 2x = 15 – x Or, x = 5m. So, 14 –x = 14 - 5 = 9m. Therefore, height of the .....

Here, Let AB denote the man, CD be the position of the tower. In triangle DAM,          DM = 11.62 - 1.62 = 10    &   tan30o = DMAM Or, √3 = 10mAM Or, AM = 10√3m. Now, Diameter = 2 ⨉ .....

Here,           PR = 120 mm          PQ = 92 mm         ∠P = 29o  . We know,          Area of △PQR =  ½ . PR. PQ SinP   .....

Here,        x = 44 mm       z = 55 mm       ∠Y = 66o . We know,          Area of △ XYZ  = ½ . x.z .SinY           .....

Let,       AD = height of the boy = 1.8 m      AC = length of the thread = 300 m       CE = height of the kite from the ground      ∠BAC = 60o In right angled triangle .....

Here,         BC = 10 cm         ∡B = 30o         Area of ∆ABC = 40 cm2                  Area of ∆ABC     = ½ . BC .....

Let,      AB = height of the man = 1.6 m      CD = height of the lamp-post      EB = length of the shadow = 2.88 m      BD = distance of the man from the lamp-post. In right angled .....

Let,      BC = height of the man = 1.6 m      AB = shadow of the man = 1.2 m       Height of the tree (H) = 12.40 m      Shadow of the tree = x      ∠CAB = θ = .....

Here,         a = 13 cm        b = 10 cm        ∠C = 65o  . We know,            Area of△ABC = ½ . ab SinC         .....

Let,       AD = height of the man = 1.6 m      CE = height of the tower       AB = DE = distance between the man and the tower = 75 m     ∠BAC = 30o In right angled triangle .....

Here,         b = 3.5 cm        a = 7.1 cm        ∠C = 100o . We know,           Area of △ABC = ½ . ab SinC           .....

Given,         CA = b = 6 cm    AB = c = 5 cm          Area of ∆ABC = 7.5 cm2 We know,                 Area of ∆ABC     = .....

Here, Let AB denote the man, DC the tower and BC the distance between the tower and man. In triangle ADM,         Tan ∡DAM = DMAM Or,  tan45o = DM150m                [Since, .....

Let, BC = height of the pole AB = length of the shadow = 6√3 m. In right angled triangle ABC,      Tan60o = BCAB  or,  √3 = BC6√3m  or, BC = 6√3m ⨉ √3  or, BC = 18 m. So, the .....

Here, Let AC = height of the tree And BC = breadth of the river. In right angled triangle ABC,          Tan 30o = ACBC or,    1√3 = 20√3BCm or,    BC = 20√3m ⨉ √3 or, .....

Here,       a = 4.5 cm      c = 3.9 cm      ∠B = 46o   Area of triangle ABC = ½ . ac SinB                           .....

Here,  AC = 8 cm and    BC = 5 cm. Area of ∆ABC = 10√2 cm2. We know, Area of ∆ABC = ½ ⨉ BC ⨉ CA SinC or, 10√2           = ½ ⨉ 5 ⨉ 8 ⨉ SinC or, 10√2     .....

Given,          BC = 10    ∡C = 60o          Area of ∆ABC = 25 cm2 We know,          Area of ∆ABC     = ½ BC. AC. SinC   .....

Here, BC = 18 cm        ∡C = 30o Area of ∆ABC = 25 cm2 We know,                Area of ∆ABC = ½ ⨉ BC ⨉ AC SinC           or, 25cm2  .....

Given, BC = 8         ∡C = 30o  Area of ∆ABC = 12 cm2 We know, Area of ∆ABC = ½ BC. AC. SinC         or, 12        = ½ ⨉ 8 ⨉ AC Sin30o     .....

Given,     a = 8 cm    b = 5√2 cm.      Area of ∆ABC = ½ ab SinC                          = ½   8 .....

Let, AB = Original height of the tree AC = length of the broken part of the tree Let D be the point on the ground at which the top of the tree meets after broken. AC = CD Here, ∠AB = 15 m and ∠BDC = 30o In right angled triangle .....

Here, PQ = 8cm, QR = 12cm. The area of the triangle PQR is given by, Area = 12 ⨉PQ⨉QR⨉sin(∡PQR)          = 12 ⨉8cm⨉12cm⨉sin30°          = 32 .....

We have,  or, 12 ⨉ DE ⨉ EF ⨉ sin(∡DEF) = 12⨉ DE⨉ DF ⨉ sin(∡EDF)   [Both are areas of same triangle] or, 5 ⨉sin(30°) = 7 ⨉  sin(∡EDF) or, 57 = sin(∡EDF) or,∡EDF = sin-1 (57) = .....

Here, ∡ ADB = ∡ BDC [ Diagonal of kite bisect the angle] Now, Area of ∆ABD = 12⨉AD⨉BD⨉sin(∡ADB)                          = 12 ⨉ 3⨉5⨉sin(30°)     .....

Here,   DE = CB = 150 m [ Opposite sides of rectangle CDEB]     In right angled ∆ADE,  Tan45°=AEDE Or, 1 = AEDE ∴AE = DE = 150 m    AB = AE + EB         = AE + EB     .....

Here, We know,        Area of triangle ABC = 12 ⨉ AB ⨉ BC⨉ sin60                                            = .....

Solution: Here, BC = 8 cm ∡B = 30o Area of ∆ABC = 20 cm2 Area of ∆ABC  = ½ . BC . AB SinB or,          20        = ½ ⨉  8 ⨉ AB ⨉ Sin30o or,   .....