Students and Teachers Forum

Given:∆ABE and //gm ABCD are on the same base AB and between the same parallels AB and DE. To prove:∆ABE = ½ of //gm ABCD in area Construction:From A, draw AF // BE meeting DF and .....

Given: ABCD is a parallelogram and P is any point inside it. AP, BP, CP and DP are joined.   To prove:  ∆APB + ∆CPD = ∆APD + ∆BPC  Construction: Draw EPF ⊥ DC and AB & draw GPH ⊥ BC and .....

Given: ABCD is a trapezium. P is any point on diagonal BD. To prove:  ∆APD  = ∆CPD Construction: Draw EPF //BC//AD and GPH//AB//DC.  Proof:  Statements Reasons  1.  ∆ADB = ∆BCD ∆DGP = .....

Given,            Base of rhombus (AB) = (BC) = 8 cm           Altitude (DE) = 3 cm. We know, Area of the rhombus (A) = base (AB) ⨉ height (DE)             .....

Given:              Para. ABCD and ∡ABE are standing on same base AB and between same parallels AB//DC. To prove:            Area of Para. ABCD = 12 of Area of .....

The median of a triangle divides a triangle into two equal .....

Given:           ABCD is a trapezium with AB//DC. E and F are the points on BD and AC respectively such that EF//AB or DC.  To prove:            ∆AOE = ∆BOF in area .     .....

Given:            Parm. ABCD and Parm. BCEF are standing on same base BC and between same parallels AF//BC. To prove:           Area of Parm. ABCD = Area of Parm. .....

Given:            Parallelogram ABCD and parallelogram ABEF are in standing on the same base AB and between the same            parallels line FC//AB. To Prove:       .....

Given:              Para. WXYZ and △PXY are standing on same base XY and between same parallels WP//XY. To prove:             Area of Para. WXYZ = 1/2 of Area of .....

Solution: Given,                 Area of parm. ABCD = 48 cm2                 Altitude of DM on side AB (h1) = 6 cm               .....

Given,        Base of the parallelogram (b) = 6 cm        Area of the parallelogram (A) = 24 cm2 We know,            Area of a parallelogram (A) = base (b) ⨉ altitude .....

Given,               Length of parallel sides,               BC= 6.4 cm and (AD) = 5.6 cm               Distance between the two parallels (DE) .....

Given, AD = 8 cm So, base (AB) = AD = 8 cm  (measure of the sides of a square being equal) We know, Area of square (A) = l2             = (8 cm)2            .....

Given,              Area of ∆ABE = 7 cm2              Area of parallelogram ABCD     = 2 ∆ABE                  .....

Given:          ∆ABC and DEF are on the equal bases BC and EF respectively and between the same parallels AD and BF. To prove:          ∆ABC = ∆DEF in area. Construction:       .....

Here, Given: DB ∥ CE                                                     To prove: Area of quadrilateral ABCD = Area .....

Given:           ABCD is a parallelogram. E is any point on AB and DE and CB are produced to meet at F. CE and BD are joined. To prove:             ∆BDF = ∆CEF .....

Given:           ∡PQR and ∡SQR are standing on same base QR and between same parallels PS//QR. To prove:            Area of ∡PQR = Area of ∡SQR. Construction: From point P, draw PX .....

We have, Area of parallelogram PQRS = height of parallelogram × base of parallelogram      Or, 45cm2 = 9cm ⨉ base       Or, base = .....

The area of parallelogram and rectangle standing on same base and between same parallels are .....

Given, Length of parallel sides, (AD) = 8 cm and (BC) = 12 cm Distance between the two parallels (DF) = 6 cm We know, Area of a trapezium (A)             = ½ (sum of parallel sides) ⨉ distance between the .....

Given,         Base (AB) = 7 cm         Distance between the parallels (DM) = 4 cm. We know, Area of a parallelogram (A) = base (AB) ⨉ height (DM)                 .....

The diagonal of a parallelogram bisect it into ...2....... .....

Given: Parallelograms ABCD and EBCF are standing on the same base and between same parallel lines .....

i. Area of ABCD = 2 Area of ∆ADE      [∵Area of parallelogram is double of area of triangle standing on same base and between same parallel lines]                       .....

i. Area of rhombus PQRS = 2 Area of ∆PQT [∵Area of parallelogram is double of area of triangle standing on same base and between same parallel lines]                           .....

i. Area of square ABCD = Area of parallelogram BCFE [∵ Area of parallelograms on the same base and parallel lines are equal and a square can be taken as parallelogram]               .....

i. Area of parallelogram ABCD = AE.CD. ii. Area of parallelogram ABCD = AF.BC. iii. From i and ii, we get            AE.CD = AF.BC        or, 5 cm × CD = 8 cm × 10 cm     .....

Given: PQ ∥ MN ∥ SR To prove: Area of ∆PSN = Area of ∆MQR. Proof: S.N Statements: S.N Reasons: 1 ∆PMN = ∆QMN 1 Triangles on the same base and between same parallel lines are equal in .....

Given: ABCD is a parallelogram and X is a point within it. To prove: Area of ∆ XCD + XAB = parallelogram  ABCD ⨉ 1/2  Construction: PQ ∥ AB and CD is drawn through .....

Given:          Area of parallelogram PQRS is equal to area of parallelogram LQMN. To prove:           LR ∥SN Construction:            L is joined with S and R is .....

Given: Q and R are mid-points of AC and AB respectively. To prove: Area of ∆PQR = 1/4  Area of ∆ABC  Construction: B & Q are joined. Proof: S.N .....

i. Area of square ABCD  = 12 AC2                                           = 12(6cm)2              .....

Given:            ABCD is a parallelogram and E is any point on AB. DE and CB are produced to meet at P.            AF and CE are joined. To prove:           .....

Given:         ABCD is a quadrilateral. AB is produced to E such that CE joined is parallel to DB. DE is joined. To prove:         quadrilateral ABCD = ∆ADE. Construction:Join .....

Given,           Base of parallelogram (DC) = 10 cm           Distance between the parallels sides (h) = 8 cm. Now,  Area of parallelogram ABCD = base (DC) ⨉ height (h)    .....

Given,          Base of parallelogram ABCD (DC) = (AB) = 8 cm          Height of parallelogram ABCD (EF) = 6 cm. We know,  Area of parallelogram ABCD (A)  =  base (AB) ⨉ height .....

Given,        Base of parallelogram ABCD (AD) = 12 cm        Height of parallelogram ABCD (FG) = 8 cm. We know,  Area of parallelogram ABCD (A) = base (AD) ⨉ height (FG)         .....

Given,         Base of parallelogram ABCD (BC) = 12 cm         Height of parallelogram ABCD (AE) = 9 cm. We know, Area of parallelogram ABCD = base (BC) ⨉ height (AE)        .....

Given, Base of triangle BEC (BC) = 8 cm Height of triangle BEC (EC) = 3 cm We know, Area of triangle BEC (A) = ½ ⨉ base (BC) ⨉ height (EC)                 = ½⨉8 cm ⨉3 .....

Given: AB//DC//EF, AD//BE and AF//DE.  To prove:  Parm. DEFH = Parm. ABCD in area Proof:  Statements Reasons 1.parallelograms. DEFH = parallelograms. DEGA 2.parallelograms. ABCD = parallelograms. .....

Area of ∆EBC = 12 × area of square ABCD                         =12 × (12×AC2)                         .....

Here, Construct a line BD. Given,     2DE=BC=12cm ==> DE = 6cm  &  BC= 12cm. Area of triangle BDC = 12 × DE × BC                           .....

i. Area of ∆ADM = 1/2 Area of parallelogram ABCD         [∵ Area of triangle is half of area of parallelogram standing on same base and between same parallel lines] ii. Area of ∆ABN =  1/2         .....

Given, Area of //gm = 20cm2 Now, Area of Tr. ABE = 12  ⨉ Area of //gm = 10cm2. Area of shaded region  = Area of //gm ABCD - Area of Tr.ABE                           .....

Area of ∆MNQ = 12×Area of para. MNOP                           = 12×MP×PR                       .....

Given: AC = 10cm, BP = 8cm and DQ = 4cm Area of qd.ABCD = ? We know, Area of qd. ABCD = 12 AC ( BP + QD)                                = 12 ⨉ 10cm ( 8cm + .....

Given,                4AM = 2CN = BD = 12 cm                =>  AM=3 cm, CN=6 cm and BD=12 cm. Now, Area of the quad. ABCD = 12 × BD(AM+CN)    .....

Here, ∆ABC = 15cm2, 2BC = CD. ∆ABD= ∆ABC  + ∆AC D            = 15cm2 + 2 ⨉15cm2         [ Since,  2BC = CD.] .....